Life Cycle of Numerically Simulated Shallow Cumulus Clouds. Part II: Mixing Dynamics

Abstract
This paper is the second in a two-part series in which life cycles of six numerically simulated shallow cumulus clouds are systematically examined. The six clouds, selected from a single realization of a large-eddy simulation, grow as a series of pulses/thermals detached from the subcloud layer. All six clouds exhibit a coherent vortical circulation and a low buoyancy, low velocity trailing wake. The ascending cloud top (ACT), which contains this vortical circulation, is associated with a dynamic perturbation pressure field with high pressure located at the ascending frontal cap and low pressure below and on the downshear side of the maximum updrafts. Examination of the thermodynamic and kinematic structure, together with passive tracer experiments, suggests that this vortical circulation is primarily responsible for mixing between cloud and environment. As the cloud ACTs rise through the sheared environment, the low pressure, vortical circulation, and mixing are all strongly enhanced on the down... Abstract This paper is the second in a two-part series in which life cycles of six numerically simulated shallow cumulus clouds are systematically examined. The six clouds, selected from a single realization of a large-eddy simulation, grow as a series of pulses/thermals detached from the subcloud layer. All six clouds exhibit a coherent vortical circulation and a low buoyancy, low velocity trailing wake. The ascending cloud top (ACT), which contains this vortical circulation, is associated with a dynamic perturbation pressure field with high pressure located at the ascending frontal cap and low pressure below and on the downshear side of the maximum updrafts. Examination of the thermodynamic and kinematic structure, together with passive tracer experiments, suggests that this vortical circulation is primarily responsible for mixing between cloud and environment. As the cloud ACTs rise through the sheared environment, the low pressure, vortical circulation, and mixing are all strongly enhanced on the down...

This publication has 46 references indexed in Scilit: