Mass Outflow Rate From Advective Accretion Disks around Compact Objects

Preprint
Abstract
We compute mass outflow rates from advective accretion disks around compact objects, such as neutron stars and black holes. These computations, for the first time, are done using combinations of exact transonic inflow and outflow solutions which may or may not form standing shock waves. Assuming that the bulk of the outflow is from the effective boundary layers of these objects, we find that the ratio of the outflow rate and inflow rate varies anywhere from a few percent to even close to a hundred percent (i.e., close to disk evacuation case) depending on the initial parameters of the disk, the degree of compression of matter near the centrifugal barrier, and the polytropic index of the flow. Our result, in general, matches with the outflow rates obtained through a fully time-dependent numerical simulation. In some region of the parameter space when the standing shock does not form, our results indicate that the disk may be evacuated and may produce quiescence states.