Metal-containing triarylboron compounds for optoelectronic applications

Abstract
Triarylboranes have recently emerged as a powerful new class of electron acceptors with great potential as optoelectronic materials. The empty p(z) orbital on the boron centre promotes strong charge-transfer transitions, leading to highly luminescent compounds with colors spanning the entire visible spectrum. Due to intense research efforts over the past decade, many examples now exist of organic molecules based on this structural motif. Only recently, however, have transition metal-containing triarylboranes been closely investigated. These compounds are capable of bright luminescence from a triplet excited state, and have been developed as efficient emissive materials for organic light-emitting diodes (OLEDs) as a result. In addition, their long-lived phosphorescence gives these materials potential as highly selective chemical sensors for small anions using time-gated detection, eliminating interference from background fluorescence. The research of the past several years has now led to a better understanding of the impact of the triarylboron group on the photophysical properties of metal complexes, which we expect will provide many opportunities for research into this class of functional phosphorescent materials.