Size Tunable Gold Nanorods Evenly Distributed in the Channels of Mesoporous Silica

Abstract
Uniformly distributed gold nanorods in mesoporous silica were synthesized in situ by performing a seed-mediated growth process in the channels of SBA-15 which functions as a hard-template to confine the diameter of gold nanorods. By changing the amount of gold precursor, gold nanorods were prepared with a fixed diameter (6-7 nm) and tunable aspect ratios from 3 to 30. Transmission electron microscope and electron tomography were utilized to visualize the gold nanorods supported on one piece of SBA-15 segment and showed a fairly uniform 3-dimensional distribution of gold nanorods within the SBA-15 channels. The longitudinal plasmon resonances of the gold nanorods/SBA-15 composites analyzed by diffuse reflectance UV-vis spectra were found to be tunable depending on the length of gold nanorods. No significant decrease in surface area and/or pore size of the composite was found after growth, indicating the growth process did not disrupt the open mesoporous structure of SBA-15. The combination of the tunable size of the nanorods and their 3-dimensional distribution within the open supporting matrix makes the gold nanorods/SBA-15 composites interesting candidates to systematically study the influence of the aspect ratio of gold nanorods on their properties and potential applications, i.e., catalyst, optical polarizer, and ultrasensitive medical imaging technique.