Enhanced characterization of niobium surface topography

Abstract
Surface topography characterization is a continuing issue for the superconducting radio frequency (SRF) particle accelerator community. Efforts are under way to both improve surface topography and its characterization and analysis using various techniques. In measurement of topography, power spectral density (PSD) is a promising method to quantify typical surface parameters and develop scale-specific interpretations. PSD can also be used to indicate how the process modifies topography at different scales. However, generating an accurate and meaningful topographic PSD of an SRF surface requires careful analysis and optimization. In this report, niobium surfaces with different process histories are sampled with atomic force microscopy and stylus profilometry and analyzed to trace topography evolution at different scales. An optimized PSD analysis protocol to serve SRF needs is presented.
Funding Information
  • U.S. Department of Energy