Abstract
The linear stability of the parallel flow ψ0=sin(y) (Kolmogorov flow) is considered, taking into account viscosity, linear friction, and confinement (lateral walls). The computations provide neutral stability curves in the parameter space, wave numbers, and wave speeds, as well as the spatial structure of first unstable modes. Evidence is presented that stability parameters depend nonuniformly on the confinement. It is shown that already weak transverse confinement significantly decreases the longitudinal wavelength of perturbations at instability onset. Strong confinement changes the character of the instability into an oscillatory one instead of a purely exponential growing mode, which is obtained for weakly confined systems. Theoretical predictions of critical parameters are in reasonable agreement with experimental results in electromagnetically driven flows of conducting fluids.

This publication has 15 references indexed in Scilit: