Primary Mechanism of the Thermal Decomposition of Tricyclodecane

Abstract
To better understand the thermal decomposition of polycyclanes, the pyrolysis of tricyclodecane has been studied in a jet-stirred reactor at temperatures from 848 to 933 K, for residence times between 0.5 and 6 s and at atmospheric pressure, corresponding to a conversion between 0.01% and 25%. The main products of the reaction are hydrogen, methane, ethylene, ethane, propene, 1,3-cyclopentadiene, cyclopentene, benzene, 1,5-hexadiene, toluene, and 3-cyclopentylcyclopentene. A primary mechanism containing all the possible initiation steps, including those involving diradicals, as well as propagation reactions has been developed and allows experimental results to be satisfactorily modeled. The main reaction pathways of consumption of tricyclodecane and of formation of the main products have been derived from flow rate and sensitivity analyses.