Molecular dynamics of Poiseuille flow and moving contact lines

Abstract
We report on molecular-dynamics simulations of the lowReynolds-number flow of Lennard-Jones fluids through a channel. Application of a pressure gradient to a single fluid produces Poiseuille flow with a no-slip boundary condition and Taylor-Aris hydrodynamic dispersion. For an immiscible two-fluid system we find a (predictable) static contact angle and, when accelerated, velocity-dependent advancing and receding contact angles. The approximate local velocity field is obtained, in which the no-slip condition appears to break down near the contact line.

This publication has 16 references indexed in Scilit: