D,L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1

Abstract
D , l -Sulforaphane (SFN), a synthetic analogue of cruciferous vegetable-derived isomer l -SFN, suppresses proliferation of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. We used LNCaP (wild-type p53) and PC-3 (p53 deficient) human prostate cancer cells to gain further insights into the mechanism of SFN-induced apoptosis. The LNCaP cell line was relatively more sensitive to SFN-induced apoptosis compared with PC-3. The SFN treatment caused stabilization of p53 protein in LNCaP cells, but SFN-mediated apoptosis was not attenuated by knockdown of p53 protein. Instead, the differential sensitivity of these cells to SFN-induced apoptosis correlated with difference in kinetics of Bax conformational change. Ectopic expression of Bcl-2 failed to confer protection against SFN-induced cell death in LNCaP cells. Treatment of PC-3 cells with SFN resulted in a marked decrease in the levels of inhibitor of apoptosis (IAP) family proteins (cIAP1, cIAP2 and XIAP), which was accompanied by inhibition of nuclear translocation of p65-nuclear factor κB (NFκB). The effect of SFN on levels of IAP family proteins as well as transcriptional activity of NFκB was biphasic in LNCaP cells. The SFN-treated LNCaP and PC-3 cells exhibited a marked increase in protein level of Apaf-1, which was accompanied by an increase in transcriptional activity of E2F1. The SFN-induced apoptosis in both cell lines was significantly attenuated by Apaf-1 protein knockdown. In conclusion, the present study reveals a complex signaling mechanism involving Bax activation, downregulation of IAP family proteins and Apaf-1 induction in regulation of SFN-induced cell death.