Effect of In-Plane Exit Angle and Rake Angles on Burr Height and Thickness in Face Milling Operation

Abstract
Burrs formed by milling are three-dimensional in nature. Therefore the three-dimensional effects on milling burr formation in 304L stainless steel were considered. An important aspect of the three-dimensional effects is the exit order of the tool edges because the burr remains near the final exit position of the tool along the workpiece edge. The geometric parameters of the workpiece and tools were varied to change exit order in the workpiece around the cutting edge. Moreover in this paper, classification of milling burrs based on burr location, shape and mechanism is also proposed to avoid confusion. The milling burrs were classified according to three locations, five shapes and four burr formation mechanisms based on fractography. The exit burr on the exit surface and the side burr on transition surface of workpiece were mainly analyzed. The effect of in-plane exit angle and radial rake angle on burr formation were shown and the burr formation mechanism for each burr was also discussed.

This publication has 4 references indexed in Scilit: