Abstract
Shallow water depths on steep slopes of as much as fifty per cent can be measured easily by weighing a light flume and the water it contains. Because water accelerates along the flume, a good approximation of the steady state depth is obtained when the recording balance is fixed to its bottom end. From the unit discharge and the depth, and not from measurements of the surface velocity, the Darcy-Weisbach friction coefficient can be calculated. The present results show that this friction coefficient is larger in thin sheet flows than that calculated from the equation for rough turbulent flow. This latter could fit at a Reynolds Number of 50,000. When the regime is laminar (Re < 2,440) the Darcy-Weisbach friction coefficient always exceeds the theoretical value of 96/Re. The great relative depth of standing and travelling waves could account for this discrepancy together with turbulence and wake formation around bottom grains. Herein it is assumed that a regime can prevail where a laminar superlayer glides over a turbulent sublayer in the vicinity of bottom grains, because the ratio of the surface velocity to the mean velocity can greatly exceed 1.5, especially on steep slopes. Until photographs of the streamlines are taken, no statement about flow regimes in supercritical sheet flow can be made.

This publication has 8 references indexed in Scilit: