Control of Energy Transfer in Oriented Conjugated Polymer-Mesoporous Silica Composites

Abstract
Nanoscale architecture was used to control energy transfer in semiconducting polymers embedded in the channels of oriented, hexagonal nanoporous silica. Polarized femtosecond spectroscopies show that excitations migrate unidirectionally from aggregated, randomly oriented polymer segments outside the pores to isolated, aligned polymer chains within the pores. Energy migration along the conjugated polymer backbone occurred more slowly than Förster energy transfer between polymer chains. The different intrachain and interchain energy transfer time scales explain the behavior of conjugated polymers in a range of solution environments. The results provide insights for optimizing nanostructured materials for use in optoelectronic devices.