Tensile properties of commercially pure vanadium from room temperature to 1200{degree}C

Abstract
The tensile properties of vanadium are sensitive to interstitial impurity content, on grain size and strain rate. Thus, it is problematic to use published tensile data for materials potentially varying in these quantities. This investigation was undertaken to fully characterize the tensile properties of the commercially pure vanadium used at Lawrence Livermore. Both sheet and rod stock were tested in vacuum from ambient temperature to 1200C at strain rates 6.67 {times} 10{sup {minus}5} to 6.67 {times} 10{sup {minus}2} s{sup {minus}1}. The results of these experiments show that vanadium behaves in a manner typical of many bcc metals containing interstitial impurities. Local peaks in yield stress and ultimate tensile stress vs temperature curves are observed at intermediate temperatures. Serrated yielding also is observed in some temperature ranges. Changes in strain rate within the quasi-static regime have a relatively small, predictable effect. The rod and sheet stock have similar properties, except that the lower yield stress of the rod is less than that of the sheet over most of the temperature range studied. No plateau in yield strength vs temperature curve was observed for the rod. In both forms, and for all temperatures, vanadium is ductile. The elongation to failure reaches amore » minimum of approximately 35% at a temperature of 500C and a maximum of approximately 140% at 1200C. « less