Abstract
The effect of gloves on the spatio-temporal characteristics of prehensile forces during lifting and holding tasks was investigated. Participants (n= 10) lifted a force transducer equipped object (weight = 0.29 N) with various types of gloves and barehanded using a two-fingered precision grip. Rubber surgical gloves of varied thicknesses (0.24, 0.61 and 1.02 mm) were worn to examine the effect of glove thickness on a rayon surface. It was found that grip force increased with thickness because the participants employed a higher safety margin above the minimum force required to hold the object. The safety margin for the barehanded condition was the smallest. The performance time for lifting the object was not influenced by the variation of glove thickness. The findings suggest that glove thickness, which presumably modifies the cutaneous sensation, influences grip force regulation. The effect of glove material (rubber and cotton) was also examined in relation to slippery (rayon) and non-slippery (sandpaper) surfaces. It was found that the participants used a larger grip force with the cotton glove than the rubber glove for the slippery surface, but not with the non-slippery surface. With use of the rubber glove, a relatively low grip force level was maintained for both slippery and non-slippery surfaces. The performance time for the cotton glove was longer than that for the rubber glove. The findings suggest that the rubber glove provides better efficiency of force and temporal control than the cotton glove in precision handling of small objects.