A Biocompatible Oxidation-Triggered Carrier Polymer with Potential in Therapeutics

Abstract
Dextran, a water-soluble, biocompatible polymer of glucose, was modified at its hydroxyls with arylboronic esters to make it soluble in common organic solvents, allowing for the facile preparation of oxidation-sensitive dextran (Oxi-DEX) carrier microparticles. These particles were found to release their payload with a half-life of 36 min at 1 mM H2O2, which can be compared with a half-life of greater than 1 week in the absence of H2O2. When used in a model vaccine application, Oxi-DEX particles loaded with ovalbumin (OVA) increased the presentation to CD8+ T-cells 27-fold relative to OVA encapsulated in a classical vehicle not sensitive to oxidation. No presentation was observed from cells incubated with unencapsulated OVA. Additionally, Oxi-DEX was found to be nontoxic in preliminary in vitro cytotoxicity assays. Because it is easy to prepare, sensitive to biological oxidation, and biocompatible, this material may represent an attractive new platform for selective delivery applications.