Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles

Abstract
Surface-enhanced Raman scattering (SERS) has been intensively explored both in theory and applications and has been widely used in chemistry, physics and biology for decades. A variety of SERS substrates have been developed in order to investigate the mechanisms behind, which give rise to the enormous enhancement even enabling single molecule detection. The Raman enhancement, which involves an electromagnetic enhancement (EM) and a chemical enhancement (CM), reflects both the physical principle of light/metal interactions and the molecule/metal interactions. In this tutorial review, we focus on the EM enhancement of SERS active substrates made of colloidal gold nanoparticles (GNPs), varying from self-assembled arrays down to single particles, for the purpose of investigating the EM coupling effect and probing the distribution of the induced electric field of single GNPs.