Physicochemical properties of cloned nucleocapsid protein from HIV. Interactions with metal ions

Abstract
The nucleocapsid (NC) protein (p15) of the human immunodeficiency virus (HIV) has been cloned and overproduced (under the control of a phage T7 promoter) in soluble form in an Escherichia coli host. The soluble NC protein is a fusion protein containing 15 amino acids from the T7 gene 10 and 7 amino acids from the HIV p24 protein at the N-terminus to make a protein of 171 amino acids. The plasmid containing the fusion gene is designated p15DF. A homogeneous product has been isolated from the induced cells and, when isolated under aerobic conditions, contains 0.3-0.5 mol of Zn/mol of protein and has only 2 titratable SH groups. Reduction and refolding in the presence of Zn(II) yields a protein containing 2.0 mol of Zn/mol of protein and 6 titratable SH groups. On the other hand, if the cells are sonicated in 2 mM CdCl2 and purified at pH 5.0, an unoxidized protein containing 2 mol of Cd/mol of protein is obtained. The Cd(II) ions can be exchanged with Zn(II), Co(II), or 113Cd(II). The Co(II)2 NC protein shows d-d electronic transitions at 695 nm [epsilon = 675 M-1 cm-1 per Co(II)] and 640 nm [epsilon = 825 M-1 cm-1 per Co(II)] compatible with regular tetrahedral geometry around both Co(II) ions. The Co(II)2 and Cd(II)2 NC proteins show intense charge-transfer bands in the near-UV, at 355 nm (epsilon = approximately 4000 M-1 cm-1) and 310 nm (epsilon = approximately 8000 M-1 cm-1) for the Co(II) protein and 255 nm (epsilon = approximately 10(4) M-1 cm-1) for the Cd(II)2 NC protein, compatible with -S- coordination. 113Cd NMR of the 113Cd(II)2 NC protein shows two 113Cd NMR signals at 659 and 640 ppm, respectively, each integrating to approximately 1 Cd(II) ion. The downfield chemical shifts suggest coordination of each 113Cd(II) ion to 3 sulfur donor atoms. The spectroscopic data fully support the prediction that the NC protein binds metal ions to each of the tandem repeats of the -Cys-X2-Cys-X4-His-X4-Cys- sequence contained in the N-terminal half of the molecule. 113Cd NMR shows, however, that the sites are not identical. Isolation of the NC protein under standard aerobic conditions results in oxidation of the sulfhydryl groups and loss of the coordinated Zn(II) ions, while preparation of the NC protein as the Cd(II) derivative at low pH protects the sulfhydryl groups from oxidation.