Free Shear Layer Behavior in Rotating Systems

Abstract
Experiments are reported concerning turbulent separated flow downstream of a backward-facing step in a two-dimensional channel that was rotated at a steady rate about a spanwise axis. Reattachment distance is reported as a function of Reynolds number, rotation direction and number and passage aspect ratio. Extensive flow visualization films have been produced. It is demonstrated that turbulent motions in a free shear layer may be suppressed or enhanced by system rotation according to the sense of the rotation. Two-dimensional, spanwise vortices which have been observed in the free shear layer are found to be relatively insensitive to system rotation in the stabilizing direction. These vortices are believed to be important contributors to the high rates of free shear layer entrainment, even in stationary systems at moderate Reynolds numbers.