NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water

Abstract
Using NMR, we measure the proton chemical shift δ, of supercooled nanoconfined water in the temperature range 195 K < T < 350 K. Because δ is directly connected to the magnetic shielding tensor, we discuss the data in terms of the local hydrogen bond geometry and order. We argue that the derivative −(∂ ln δ/∂T)P should behave roughly as the constant pressure specific heat CP(T), and we confirm this argument by detailed comparisons with literature values of CP(T) in the range 290–370 K. We find that −(∂ ln δ/∂T)P displays a pronounced maximum upon crossing the locus of maximum correlation length at ≈240 K, consistent with the liquid-liquid critical point hypothesis for water, which predicts that CP(T) displays a maximum on crossing the Widom line.

This publication has 84 references indexed in Scilit: