Abstract
Visual-form systems in the cerebral hemispheres were examined in 3 experiments. After learning new types of visual forms, participants rapidly classified previously unseen prototypes of the newly learned types more efficiently when the forms were presented directly to the left hemisphere (in the right visual field) than when the forms were presented directly to the right hemisphere (in the left visual field). Neither previously seen nor previously unseen distortions of the prototypes were classified more efficiently when presented directly to the left hemisphere than when presented directly to the right hemisphere. Results indicate that an abstract visual-form system operates effectively in the left hemisphere and stores information that remains relatively invariant across the specific instances of a type of form to distinguish different types. Furthermore, this system functions relatively independently of another system that operates effectively in the right hemisphere and that stores details to distinguish specific instances of a type of form.