Abstract
Using a body force method and the finite-part integral concepts, a set of hypersingular integral equations for a vertical crack terminating at an interface in a three-dimensional infinite bimaterial subjected to arbitrary loads are derived. The stress singularity orders and singular stress fields around the crack front terminating at the interface are obtained by the main-part analytical method of hypersingular integral equations. Then, a numerical method for the solution of the hypersingular integral equations in case of a rectangular crack is proposed, in which the crack displacement discontinuities are approximated by the product of basic density functions and polynomials. Numerical solutions for the stress intensity factors of some examples are given.