The Effects of Visual Depth and Eccentricity on Manual Bias, Induced Motion, and Vection

Abstract
The relationship between the effects of visual-surround roll motion on compensatory manual tracking of a central display and the perceptual phenomena of induced motion and vection were investigated. To determine if manual-control biases generated in the direction of surround rotation compensate primarily for the perceived counterrotation of the central display (‘induced motion’) or the perceived counterrotation of the entire body (‘vection’), the depth and eccentricity of the visual surround were varied. In the first experiment, twelve subjects attempted to keep an unstable central display level while viewing rotating visual surrounds in three depth planes: near (∼20 cm in front of the central display), coplanar, and far (∼21 cm behind the central display). In the second experiment, twelve additional subjects viewed a rotating surround that was presented either in the full visual field (0–110 deg) or in central and peripheral regions of similar width. Manual-control biases and induced motion were shown to be closely related to one another and strongly influenced both by central and by peripheral surround motion at or beyond the plane of fixation. Vection, on the other hand, was shown to be much more dependent on peripheral visual inputs.