Wolbachia Utilizes Host Microtubules and Dynein for Anterior Localization in the Drosophila Oocyte

Abstract
To investigate the role of the host cytoskeleton in the maternal transmission of the endoparasitic bacteria Wolbachia, we have characterized their distribution in the female germ line of Drosophila melanogaster. In the germarium, Wolbachia are distributed to all germ cells of the cyst, establishing an early infection in the cell destined to become the oocyte. During mid-oogenesis, Wolbachia exhibit a distinct concentration between the anterior cortex and the nucleus in the oocyte, where many bacteria appear to contact the nuclear envelope. Following programmed rearrangement of the microtubule network, Wolbachia dissociate from this anterior position and become dispersed throughout the oocyte. This localization pattern is distinct from mitochondria and all known axis determinants. Manipulation of microtubules and cytoplasmic Dynein and Dynactin, but not Kinesin-1, disrupts anterior bacterial localization in the oocyte. In live egg chambers, Wolbachia exhibit movement in nurse cells but not in the oocyte, suggesting that the bacteria are anchored by host factors. In addition, we identify mid-oogenesis as a period in the life cycle of Wolbachia in which bacterial replication occurs. Total bacterial counts show that Wolbachia increase at a significantly higher rate in the oocyte than in the average nurse cell, and that normal Wolbachia levels in the oocyte depend on microtubules. These findings demonstrate that Wolbachia utilize the host microtubule network and associated proteins for their subcellular localization in the Drosophila oocyte. These interactions may also play a role in bacterial motility and replication, ultimately leading to the bacteria's efficient maternal transmission. Intracellular bacteria that cause disease exploit host cells for their survival and reproduction. Here the authors are studying Wolbachia, an intracellular bacteria that infects many insect species and other invertebrates, such as filarial nematodes, the agents of diseases such as African river blindness and elephantiasis. Wolbachia transmission is similar to mitochondrial inheritance, that is, from mother to offspring in the host. However, little is known about the mechanisms of this maternal transmission and the interactions of Wolbachia and its hosts at the cellular level. Here the authors show that in the fruit fly Drosophila melanogaster, Wolbachia bacteria are initially distributed uniformly throughout the female germ line but concentrate during the middle stages of oogenesis in the future oocyte, exhibiting a striking anterior localization that is distinct from mitochondria and all known axis determinants. The authors demonstrate that microtubules and the minus-end-directed motor Dynein are required for this subcellular localization, suggesting that Wolbachia uses the host's microtubule cytoskeleton and transport system to ensure its transmission to the next generation. This microtubule dependence contrasts with the Actin-based motility observed for many other intracellular bacteria and may provide a foundation for further probing of the molecular and cellular basis of Wolbachia replication and transmission.