Shared and Private Variability in the Auditory Cortex

Abstract
The high variability of cortical sensory responses is often assumed to impose a major constraint on efficient computation. In the auditory cortex, however, response variability can be very low. We have used in vivo whole cell patch-clamp methods to study the trial-to-trial variability of the subthreshold fluctuations in membrane potential underlying tone-evoked responses in the auditory cortex of anesthetized rats. Using methods adapted from classical quantal analysis, we partitioned this subthreshold variability into a private component (which includes synaptic, thermal, and other sources local to the recorded cell) and a shared component arising from network interactions. Here we report that this private component is remarkably small, usually about 1–3 mV, as quantified by the variance divided by the mean of the ensemble of tone-evoked response heights. The shared component can be much larger, and shows more heterogeneity across the population, ranging from about 0 to 10 mV. The remarkable fact that, at least 5 synapses from the auditory periphery, this variability remains so small raises the possibility that the intervening neural circuitry is organized so as to prevent private noise from accumulating as neural signals propagate to the cortex.