Breast Cancer: Conventional Diagnosis and Treatment Modalities and Recent Patents and Technologies

Abstract
Breast cancer is the most prevalent cancer among women worldwide. However, increased survival is due to the dramatic advances in the screening methods, early diagnosis, and breakthroughs in treatments. Over the course of the last decade, many acquisitions have taken place in this critical field of research in the pharmaceutical industry. Advances in molecular biology and pharmacology aided in better understanding of breast cancer, enabling the design of smarter therapeutics able to target cancer and respond to its microenvironment efficiently. Patents and research papers investigating diagnosis and treatment strategies for breast cancer using novel technologies have been surveyed for the past 15 years. Various nanocarriers have been introduced to improve the therapeutic efficacy of anticancer drugs, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of breast cancer, conventional therapy, novel technologies in the management of breast cancer, and rational approaches for targeting breast cancer.Highlights: Breast cancer is the most common cancer in women worldwide. However, survival rates vary widely, optimistically heading toward a positive trend. Increased survival is due to the drastic shift in the screening methods, early diagnosis, and breakthroughs in treatments. Different strategies of breast cancer classification and staging have evolved over the years. Intrinsic (molecular) subtyping is essential in clinical trials and well understanding of the disease. Many novel technologies are being developed to detect distant metastases and recurrent disease as well as to assess response to breast cancer management. Intensive research efforts are actively ongoing to take novel breast cancer therapeutics to potential clinical application. Most of the recent research papers and patents discuss one of the following strategies: the development of new drug entities that specifically target the breast tumor cells; tailor designing a novel carrier system that can multitask and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a therapeutic drug moiety with a targeting moiety, diagnostic moiety or pharmacokinetics altering moiety; or the use of innovative nontraditional approaches such as genetic engineering, stem cells, or vaccinations.