Role of Orbitofrontal Cortex Neuronal Ensembles in the Expression of Incubation of Heroin Craving

Abstract
In humans, exposure to cues previously associated with heroin use often provokes relapse after prolonged withdrawal periods. In rats, cue-induced heroin seeking progressively increases after withdrawal (incubation of heroin craving). Here, we examined the role of orbitofrontal cortex (OFC) neuronal ensembles in the enhanced response to heroin cues after prolonged withdrawal or the expression of incubation of heroin craving. We trained rats to self-administer heroin (6 h/d for 10 d) and assessed cue-induced heroin seeking in extinction tests after 1 or 14 withdrawal days. Cue-induced heroin seeking increased from 1 to 14 d and was accompanied by increased Fos expression in ∼12% of OFC neurons. Nonselective inactivation of OFC neurons with the GABA agonists baclofen + muscimol decreased cue-induced heroin seeking on withdrawal day 14 but not day 1. We then used the Daun02 inactivation procedure to assess a causal role of the minority of selectively activated Fos-expressing OFC neurons (that presumably form cue-encoding neuronal ensembles) in cue-induced heroin seeking after 14 withdrawal days. We trainedc-fos–lacZtransgenic rats to self-administer heroin and 11 d later reexposed them to heroin-associated cues or novel cues for 15 min (induction day), followed by OFC Daun02 or vehicle injections 90 min later; we then tested the rats in extinction tests 3 d later. Daun02 selectively decreased cue-induced heroin seeking in rats previously reexposed to the heroin-associated cues on induction day but not in rats exposed previously to novel cues. Results suggest that heroin-cue-activated OFC neuronal ensembles contribute to the expression of incubation of heroin craving.