CD161 Expression Defines a Th1/Th17 Polyfunctional Subset of Resident Memory T Lymphocytes in Bronchoalveolar Cells

Abstract
Alveolar resident memory T cells (TRM) comprise a currently uncharacterized mixture of cell subpopulations. The CD3+CD161+ T cell subpopulation resides in the liver, intestine and skin, but it has the capacity for tissue migration; however, the presence of resident CD3+CD161+ T cells in the bronchoalveolar space under normal conditions has not been reported. Bronchoalveolar cells (BACs) from healthy volunteers were evaluated and found that 8.6% (range 2.5%-21%) of these cells were CD3+ T lymphocytes. Within the CD3+ population, 4.6% of the cells (2.1–11.3) expressed CD161 on the cell surface, and 74.2% of the CD161+CD3+ T cells expressed CD45RO. The number of CD3+CD161+ T cells was significantly lower in the bronchoalveolar space than in the blood (4.6% of BACs vs 8.4% of peripheral blood mononuclear cells (PBMCs); P+ T lymphocytes and 1.52% of CD8+ T lymphocytes expressed CD161. Twenty-two percent of the alveolar CD3+CD161+ T lymphocytes produced cytokines upon stimulation by PMA plus ionomycin, and significantly more interferon gamma (IFN-γ) was produced compared with other cytokines (P = 0.05). Most alveolar CD3+CD161+ T cells produced interleukin-17 (IL-17) and IFN-γ simultaneously, and the percentage of these cells was significantly higher than the percentage of CD3+CD161 T cells. Moreover, the percentage of alveolar CD3+CD161+ T lymphocytes that produced IFN-γ/IL-17 was significantly higher than those in the peripheral blood (p+CD161+ TRM could contribute to compartment-specific immune responses in the lung.