Ultrafast charge transfer in MoS 2 /WSe 2 p–n Heterojunction

Abstract
Atomically thin and sharp van der Waals heterojunction can be created by vertically stacking p-type monolayer tungsten diselenide (WSe2) onto n-type molybdenum disulfide (MoS2). Theory predicts that stacked MoS2 and WSe2 monolayer forms type II p–n junction, creating a built-in electric field across the interface which facilitates electron–hole separation and transfer. Gaining insights into the dynamics of charge transfer across van der Waals heterostructure is central to understanding light-photocurrent conversion at these ultrathin interfaces. Herein, we investigate the exciton dissociation and charge transfer in a MoS2/WSe2 van der Waals hetero-structure. Our results show that ultrafast electron transfer from WSe2 to MoS2 take place within 470 fs upon optical excitation with 99% charge transfer efficiency, leading to drastic photoluminescence quenching and decreased lifetime. Our findings suggest that van der Waals heterostructure may be useful as active components in ultrafast optoelectronic devices.
Funding Information
  • Singapore-Berkeley Research Initiative for Sustainable Energy