Spectral-weight transfer: Breakdown of low-energy-scale sum rules in correlated systems

Abstract
In this paper we study the spectral-weight transfer from the high- to the low-energy scale by means of exact diagonalization of finite clusters for the Mott-Hubbard and charge-transfer model. We find that the spectral-weight transfer is very sensitive to the hybridization strength as well as to the amount of doping. This implies that the effective number of low-energy degrees of freedom is a function of the hybridization and therefore of the volume and temperature. In this sense it is not possible to define a Hamiltonian which describes the low-energy-scale physics unless one accepts an effective nonparticle conservation.