Dense core secretory vesicles revealed as a dynamic Ca2+store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera

Abstract
The role of dense core secretory vesicles in the control of cytosolic-free Ca2+ concentrations ([Ca2+]c) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2–synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet β-cells: (a) increases in [Ca2+]c cause a prompt increase in intravesicular-free Ca2+ concentration ([Ca2+]SV), which is mediated by a P-type Ca2+-ATPase distinct from the sarco(endo) plasmic reticulum Ca2+-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca2+ pumps; (b) steady state Ca2+ concentrations are 3–5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca2+; (c) inositol (1,4,5) trisphosphate has no impact on [Ca2+]SV in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca2+]SV. Thus, secretory vesicles represent a dynamic Ca2+ store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca2+-induced Ca2+ release from vesicles docked at the plasma membrane could participate in triggering exocytosis.