Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy

Abstract
The secondary and tertiary structure of keratin and natural moisturizing factor (NMF) are of great importance regarding the water regulating functions in the stratum corneum (SC). In this in vivo study, the depth-dependent keratin conformation and its relationship to the hydrogen bonding states of water and its content in the SC, are investigated using confocal Raman microscopy. Based on the obtained depth-profiles for the β-sheet/α-helix ratio, the stability of disulphide bonds, the amount of cysteine forming disulphide bonds, the buried/exposed tyrosine and the folding/unfolding states of keratin, a “three layer model” of the SC, regarding the keratin-water-NMF interaction is proposed. At the uppermost layers (30–0% SC depth), the keratin filaments are highly folded, entailing limited water binding sites, and NMF is mostly responsible for binding water. At the intermediate layers (70–30% SC depth), the keratin filaments are unfolded, have the most water binding sites and are prone to swelling. At the bottom layers (100–80% SC depth), the water binding sites are already occupied with water and cannot swell substantially. The hydrogen bonding states of water molecules can only be explained by considering both, the molecular structure of keratin and the contribution of NMF as a holistic system.