Measurement of radio signal propagation through window panes and energy saving windows

Abstract
Glass windows have undergone an energy saving evolution over the past three, four decades, from single panes till today's ultralow-emission windows. While the earliest energy saving windows were constructed as a sandwich of clear glass panes using the vacuum-flask principle, modern low-emission windows includes panes with coatings of metal and/or metal oxides. This coating has caused radio propagation problems for communication systems; something that may be utilized to protect a building from intentional electromagnetic interference (IEMI) attacks and to help protecting against information leakage. In this paper measurements of the shielding performance of different generations of windows and qualities of window panes are presented. The intention is to include the results in a guide-line for IEMI protection of critical infrastructures. Measurements are made using two complementary methods; in a nested reverberation chamber and in a semi-anechoic chamber, both over the range 1 - 18 GHz. The results show a clear generation dependency where the energy saving windows largely do not attenuate RF signals at all and low-emission windows offer shielding effectiveness values between 10 and 45 dB with potentially as much as around 60 dB in the upper half of the spectrum.

This publication has 8 references indexed in Scilit: