Evaluation and integration of 49 genome-wide experiments and the prediction of previously unknown obesity-related genes

Abstract
Motivation: Genome-wide experiments only rarely show resounding success in yielding genes associated with complex polygenic disorders. We evaluate 49 obesity-related genome-wide experiments with publicly available findings including microarray, genetics, proteomics and gene knock-down from human, mouse, rat and worm, in terms of their ability to rediscover a comprehensive set of genes previously found to be causally associated or having variants associated with obesity. Results: Individual experiments show poor predictive ability for rediscovering known obesity-associated genes. We show that intersecting the results of experiments significantly improves the sensitivity, specificity and precision of the prediction of obesity-associated genes. We create an integrative model that statistically significantly outperforms all 49 individual genome-wide experiments. We find that genes known to be associated with obesity are significantly implicated in more obesity-related experiments and use this to provide a list of genes that we predict to have the highest likelihood of association for obesity. The approach described here can include any number and type of genome-wide experiments and might be useful for other complex polygenic disorders as well. Contact:abutte@stanford.edu Supplementary information: Available online and at http://buttelab.stanford.edu/doku.php?id=public:obesityintegration

This publication has 36 references indexed in Scilit: