Abstract
The change in the porosity of styrene–divinylbenzene (S–DVB) copolymers during drying as a function of the quality of the diluent and of the divinylbenzene (DVB) concentration was investigated after drying the networks from water (maximum porosity) and from toluene (stable porosity). Two different diluents, namely toluene and cyclohexanol, were used in the polymerization system at a fixed volume fraction of the organic phase (0.50). The phase separation in toluene is accompanied by a slight deswelling of the network phase, whereas that in cyclohexanol leads to largely unswollen network phase. The stable porosity increases abruptly over a narrow range of the DVB concentration, i.e., between 40 and 50% DVB in toluene and between 15 and 25% DVE in cyclohexanol. The maximum porosity increases almost linearly with increasing DVB concentration up to a certain value, and then remains constant. The results indicate that the two main factors which determine the physical state of the swollen heterogeneous S–DVB copolymers, as well as the stability of the porous structures, are (1) the critical conversion at the incipient phase separation and (2) the degree of the inhomogeneity in crosslink distribution.

This publication has 23 references indexed in Scilit: