Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: β2‐microglobulin inactivation in MSI‐positive tumors and LMP7/TAP2 downregulation in MSI‐negative tumors

Abstract
The mechanisms that lead to loss of MHC class I expression in different types of tumors are not yet fully known. Accordingly, we studied colorectal carcinomas to elucidate the specific mechanisms of evasion of the T-cell immune response. We selected tumors with total loss of MHC class I expression and studied 124 colorectal carcinomas with immunohistochemical staining and anti-HLA monoclonal antibodies (mAb). Fourteen of 124 (11%) tumors exhibited a phenotype with HLA class I total loss. Microsatellite instability (MSI) analysis was also carried out in the same tumor samples. The expression of beta2-microglobulin (beta2m), HLA-A, B, and C antigens, transporter associated with antigen processing 1 (TAP1), TAP2, low-molecular-weight protein 2 (LMP2), and LMP7 were analyzed using reverse-transcription polymerase chain reaction (RT-PCR) in microdissected tumor samples. Four of 14 microsatellite instability-positive (MSI+) and W6/32 mAb-negative tumors showed biallelic inactivation of beta2m and accumulation of HLA class I heavy chain in the cytoplasm. MSI-negative (MSI-)/W6/32 mAb-negative tumors presented alterations in the expression of components of the antigen processing machinery (APM). Nine of 10 tumor samples showed LMP7 gene downregulation, and four of 10 presented TAP2 dysregulation. This group apparently expressed normal levels of heavy chain and beta2m mRNA. Two major mechanisms in colorectal cancer appear to be responsible for the total loss of MHC surface expression (beta2m mutations and LMP7/TAP2 downregulation) that may contribute to the failure of T lymphocyte recognition during an immune response. The precise identification of the molecular defects that underlie HLA class I abnormalities will have important implications for patients receiving T-cell-based specific immunotherapy.