LMI robust control design for boost PWM converters

Abstract
This work presents an analytical study and an experimental verification of a robust control design based on a linear matrix inequalities (LMI) framework for boost regulators. With the proposed LMI method, non-linearities and uncertainties are modelled as a convex polytope. Thus, the LMI constraints permit to robustly guarantee a certain perturbation rejection level and a region of pole location. With this approach, the multiobjective robust controller is computed automatically by a standard optimisation algorithm. The proposed method results in a state-feedback law efficiently implementable by operational amplifiers. PSIM simulations and experimental results obtained from a prototype are used to validate this approach. The results obtained are compared with a conventional PID controller.

This publication has 22 references indexed in Scilit: