Feasibility of field-based light scattering spectroscopy

Abstract
Light scattering spectroscopy (LSS) is a new technique capable of accurately measuring the features of nuclei and other cellular organelles in situ. We present the considerations required to implement and interpret field-based detection in LSS, where the scattered electric field is detected interferometrically, and demonstrate that the technique is experimentally feasible. A theoretical formalism for modeling field-based LSS signals based on Mie scattering is presented. Phase-front uniformity is shown to play an important and novel role. Results of heterodyne experiments with polystyrene microspheres that localize LSS signals to a region about 30 µm in axial extent are reported. In addition, differences between field-based LSS and the earlier intensity-based LSS are discussed.