Insect Symbiosis: Derivation of Yeast-like Endosymbionts Within an Entomopathogenic Filamentous Lineage

Abstract
Yeast-like endosymbionts (YLSs) of insects often are restricted to specific hosts and are essential to the host's survival. For example, in planthoppers (Homoptera: Delphacidae), endosymbionts function in sterol utilization and nitrogen recycling for the hosts. Our study, designed to investigate evolutionary changes in the YLS lineage involved in the planthopper association, strongly suggests an origin of the YLSs from within the filamentous ascomycetes (Euascomycetes), not the true yeasts (Saccharomycetes), as their morphology might indicate. During divergence of the planthopper YLSs, dramatic changes would have occurred in the insect-fungus interaction and the fungal morphology that have previously been undescribed in filamentous ascomycetes. Phylogenetic trees were based on individual and combined data sets of 2.6 kb of the nuclear small- and large-subunit ribosomal RNA genes for YLSs from three rice planthoppers (Laodelphax striatellus, Nilaparvata lugens, and Sogatella furcifera) compared with 56 other fungi. Parsimony analysis placed the planthopper YLSs within Cordyceps (Euascomycetes: Hypocreales: Clavicipitaceae), a genus of filamentous insects and a few fungal pathogenic ascomycetes. Another YLS species restricted to the aphid Hamiltonaphis styraci (Homoptera: Aphididae) was a sister taxon to the planthopper YLSs. Filamentous insect pathogens (Metarhizium and Beauveria) specific to the same species of insect hosts as the YLSs also formed lineages within the Clavicipitaceae, but these were distinct from the clade comprising YLS species. Trees constrained to include the YLSs in families of the Hypocreales other than the Clavicipitaceae were rejected by the Kishino-Hasegawa test. In addition, the results of this study support a hypothesis of two independent origins of insect-associated YLSs from among filamentous ascomycetes: the planthopper YLSs in the Clavicipitaceae and the YLSs associated with anobiid beetles (Symbiotaphrina species). Several lineages of true yeasts (Saccharomycetes) also formed endosymbiotic associations with beetles, but they were not closely related to either group derived from the filamentous ascomycetes.