Bone Mineral Measurements: A Comparison of Delayed Gamma Neutron Activation, Dual-Energy X-ray Absorptiometry and Direct Chemical Analysis

Abstract
A system in vitro consisting of a femur from a cadaver and soft-tissue equivalent material was used to test the agreement between several techniques for measuring bone mineral. Calcium values measured by delayed gamma neutron activation (DGNA) and bone mineral content (BMC) by Lunar, Hologic and Norland dual-energy X-ray absorptiometers (DXA) were compared with calcium and ash content determined by direct chemical analysis. To assess the effect of soft-tissue thickness on measurements of bone mineral, we had three phantom configurations ranging from 15.0 to 26.0 cm in thickness, achieved by using soft-tissue equivalent overlays. Chemical analysis of the femur gave calcium and ash content values of 61.83 g ± 0.51g and 154.120 ± 0.004 g, respectively. Calcium measured by DGNA did not differ from the ashed amount of calcium at any of the phantom configurations. The BMC measured by DXA was significantly higher, by 3–5%, than the amount determined by chemical analysis for the Lunar densitometer and significantly lower, by 3–6%, for the Norland densitometer (pp<0.05). However, within the entire thickness range (15.0–26.0 cm), the overall influence of thickness on BMC by DXA was very small. These findings offer insight into the differences in these currently available methods for bone mineral measurement and challenge the comparability of different methods.