Microscopic and Ultrastructural Changes of Müller’s Muscle in Patients With Simple Congenital Ptosis

Abstract
To study microscopic and ultrastructural changes of Müller's muscle in patients with isolated congenital ptosis. In this prospective, observational case-control study, Müller's muscle specimens were collected during ptosis surgical correction for 18 consecutive patients. Each specimen was divided into 2 parts. One part was embedded in formalin for light microscopy, and the other one was fixed in 3% glutaraldehyde for electron microscopy. A neuropathologist, serving as a masked evaluator, blindly reviewed all the different features for every case and counted the number of myocytes showing distinct myofilaments in the whole grid for every case. Statistical analysis using compare means and correlation tests was conducted to investigate potential associations and/or differences within and across groups. Twelve Müller's muscle specimens from patients with simple congenital ptosis of various severities and 6 specimens from patients with aponeurotic ptosis (controls) were collected and studied. Under light microscopy, congenital ptosis slides showed a small number of dispersed myocytes in a fibrotic background, whereas acquired ptosis slides showed a greater number of well-defined myocytes. Under electron microscopy, all congenital ptosis specimens had only a very small number of myocytes with clear, distinct myofilaments. Most myocytes in the aponeurotic ptosis group showed clear, distinct myofilaments, indicating a well-preserved muscle. No relationship existed between the number of clear, distinct myofilaments observed in the congenital ptosis group by transmission electron microscopy and patient age or ptosis severity. Substantial Müller's muscle atrophy was observed in patients with different severities of isolated congenital ptosis.