Local Regimes of Atmospheric Variability: A Case Study of Southern California

Abstract
The primary regimes of local atmospheric variability are examined in a 6-km regional atmospheric model of the southern third of California, an area of significant land surface heterogeneity, intense topography, and climate diversity. The model was forced by reanalysis boundary conditions over the period 1995–2003. The region is approximately the same size as a typical grid box of the current generation of general circulation models used for global climate prediction and reanalysis product generation, and so can be thought of as a laboratory for the study of climate at spatial scales smaller than those resolved by global simulations and reanalysis products. It is found that the simulated circulation during the October–March wet season, when variability is most significant, can be understood through an objective classification technique in terms of three wind regimes. The composite surface wind patterns associated with these regimes exhibit significant spatial structure within the model domain, consistent with the complex topography of the region. These regimes also correspond nearly perfectly with the simulation’s highly structured patterns of variability in hydrology and temperature, and therefore are the main contributors to the local climate variability. The regimes are approximately equally likely to occur regardless of the phase of the classical large-scale modes of atmospheric variability prevailing in the Pacific–North American sector. The high degree of spatial structure of the local regimes and their tightly associated climate impacts, as well as their ambiguous relationship with the primary modes of large-scale variability, demonstrate that the local perspective offered by the high-resolution model is necessary to understand and predict the climate variations of the region.