OspE2 of Shigella sonnei Is Required for the Maintenance of Cell Architecture of Bacterium-Infected Cells

Abstract
The OspE2 product of Shigella spp., the expression of which is regulated by the mxiE gene, is secreted through a type III secretion system into host cells. We investigated the function of OspE2 of Shigella sonnei by using cultured epithelial cells. Cells invaded by an ospE2 deletion mutant altered their morphology into the rounding shape, which was not due to cell death, whereas cells invaded by the wild-type strain kept their cell shape intact. The ospE2 mutation did not affect initial cell entry and multiplication in cells, but the mutant formed smaller-than-normal plaques on cell monolayers, indicating a deficiency in cell-to-cell spread by the bacteria. An mxiE deletion mutant also showed changes in cell morphology and deficiency in bacterial spread to adjacent cells. In cells invaded by the ospE2 mutant, disturbance of actin stress fibers was prominent at 3 h after invasion. Analysis of OspE2 localization indicated that the OspE2 protein accumulated on focal contact-like structures in the infected host cells. These results suggest that colocalization of the OspE2 protein in the focal contacts of infected cells may function to maintain an intact cell morphology. The morphological change induced by invasion of the ospE2 mutant may affect secondary bacterial transmission.