Abstract
For many years the effects of a static or dynamic electric field upon electronic motion in a molecule have been studied. These effects have been described in terms of multipolar electronic polarizabilities and higher-order hyperpolarizabilities. Much less attention, however, has been paid to the effects of an electric field upon vibrational and rotational motion. It is the aim of this review to consider, in some detail, these effects. As in the electronic work, they too will be described in terms of polarizabilities and hyperpolarizabilities (the latter being particularly important for the study of nonlinear optics). The theory will be developed so as to bring together the different methods that have been used in various calculations. Examples drawn from the recent literature will be discussed and it will be seen that in many cases vibrational and rotational changes with an electric field are as important as electronic ones, if not more so. Examples of experimental work relevant to this review include research on the Kerr effect, electric-field-induced second-harmonic generation, and third-harmonic generation.