Abstract
The accuracy of a destructive, experimental method for the evaluation of through-thickness residual stress distributions is investigated. The application of the method is to a welded pipe that has been subjected to a residual stress improvement process. The residual stress improvement process introduces gradients in the stress distribution. The question of interest is how well the back-computation method used to interpret the experimental data represents the residual stress distribution for this type of stress profile. To address this question, a finite element model was used to provide a reference stress solution for comparison with the back-computation results of the experimental method. Three-dimensional finite element stress analyses were also conducted to simulate the cutting steps of the destructive laboratory procedure. The residual stress distributions obtained by the back-computation procedure were then compared with the reference stress solutions provided by the finite element model. The comparisons show agreement and indicate that good results can be expected from the experimental method when it is applied to a pipe that has been subjected to a residual stress improvement process, provided that the axial gradient of stress is not too large.