Abstract
Orthogonal frequency division multiplexing (OFDM) is a promising way to provide large data rates at reasonable complexity in wireless fading channels. However, a major disadvantage of OFDM is its large peak-to-average power ratio, which significantly decreases the efficiency of the transmitter power amplifier and hence forms a major obstacle to implementing OFDM in portable communication systems. This paper shows the possibility of using complementary codes for both decreasing the peak-to-average power (PAP) ratio and error correction. Set sizes and minimum distance properties of these codes are derived. It is shown that specific subsets of complementary codes have a minimum distance of up to half the code length, while their PAP ratio is only 3 dB. Simulation results demonstrate the viability of using these codes in multipath fading channels. It is currently planned to implement OFDM with complementary codes in the Wireless ATM Network Demonstrator (WAND), a joint European ACTS program.

This publication has 6 references indexed in Scilit: