NMR Heteronuclear Correlation between Quadrupolar Nuclei in Solids

Abstract
We show for the first time that it is possible to acquire high-resolution heteronuclear NMR correlation experiments in solid state between second-order-broadened half integer quadrupolar nuclei (i.e., 27Al and 17O) using the scalar J-coupling. The sensitivity of the experiment is dramatically improved at high fields (gain proportional to the fourth power of the principal field) with a combination of signal enhancement techniques. This turns a challenging experiment into a real tool. We apply this experiment to characterize a calcium aluminate glass in which we prove the presence of tricluster μ3 oxygen sites and describe the signature of their directly bonded aluminum sites. Applications involve a large range of possible pairs of quadrupolar nuclei in different materials, such as glasses, porous or mesoporous framework materials, zeolites, hybrid organic−inorganic, and bioinvolved materials.

This publication has 19 references indexed in Scilit: