Ideal ratio mask estimation using deep neural networks for robust speech recognition

Abstract
We propose a feature enhancement algorithm to improve robust automatic speech recognition (ASR). The algorithm estimates a smoothed ideal ratio mask (IRM) in the Mel frequency domain using deep neural networks and a set of time-frequency unit level features that has previously been used to estimate the ideal binary mask. The estimated IRM is used to filter out noise from a noisy Mel spectrogram before performing cepstral feature extraction for ASR. On the noisy subset of the Aurora-4 robust ASR corpus, the proposed enhancement obtains a relative improvement of over 38% in terms of word error rates using ASR models trained in clean conditions, and an improvement of over 14% when the models are trained using the multi-condition training data. In terms of instantaneous SNR estimation performance, the proposed system obtains a mean absolute error of less than 4 dB in most frequency channels.

This publication has 17 references indexed in Scilit: