Prepubertal Changes in the Hypothalamic-Pituitary Axis of Holstein Bulls1

Abstract
We investigated the nature and sites of changes in the hypothalamic-pituitary axis associated with the onset of high-frequency, high-amplitude discharges of luteinizing hormone (LH) in young bulls during the transition from the infantile to the prepubertal phase of development. Blood serum and neuroendocrine tissues from bulls killed at 1, 6, 10, 14, or 18 wk of age were evaluated. Concentrations of LH in serum from bulls 1 or 6 wk old averaged less than 0.25 ng/ml and only one episodic discharge of LH was detected for 10 bulls. At 10, 14, or 18 wk, 14 of 15 bulls had episodic discharges of LH. Concentrations of testosterone in serum were progressively higher at 10, 14, and 18 wk, but the concentration of estradiol was maximal at 6 wk. The concentrations of gonadotropin-releasing hormone (GnRH) in the anterior hypothalamus, posterior hypothalamus, or median eminence were not influenced by age. However, concentration of GnRH receptors in the anterior pituitary gland increased 314% between 6 and 10 wk and the concentration of LH increased 67%. Between 6 and 10 wk, concentrations of estradiol receptors in the anterior and posterior hypothalamus declined by 68% and 46%, but the concentration of estradiol receptors in the anterior pituitary gland increased by 103%. For most characteristics, there was no major change between 10 and 18 wk. We postulate that between 6 and 10 wk of age, there is 1) removal of an estradiol-mediated block of GnRH secretion and 2) an estradiol-mediated, and possibly GnRH-mediated, increase in pituitary GnRH receptors. Together, these changes result in greatly increased stimulation of the anterior pituitary gland by GnRH between 6 and 10 wk of age and stimulation of the discharges of LH characteristic of bulls in the early prepubertal phase of development.