The Kovacs effect in model glasses

Abstract
We discuss the `memory effect' discovered in the 60's by Kovacs in temperature shift experiments on glassy polymers, where the volume (or energy) displays a non monotonous time behaviour. This effect is generic and is observed on a variety of different glassy systems (including granular materials). The aim of this paper is to discuss whether some microscopic information can be extracted from a quantitative analysis of the `Kovacs hump'. We study analytically two families of theoretical models: domain growth and traps, for which detailed predictions of the shape of the hump can be obtained. Qualitatively, the Kovacs effect reflects the heterogeneity of the system: its description requires to deal not only with averages but with a full probability distribution (of domain sizes or of relaxation times). We end by some suggestions for a quantitative analysis of experimental results.