Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes

Abstract
Summary: Monocytes (MO) migrating into normal, non-inflamed intestinal mucosa undergo a specific differentiation resulting in a non-reactive, tolerogenic intestinal macrophage (IMAC). Recently we demonstrated the differentiation of MO into an intestinal-like macrophage (MAC) phenotype in vitro in a three-dimensional cell culture model (multi-cellular spheroid or MCS model). In the mucosa of patients with inflammatory bowel disease (IBD) in addition to normal IMAC, a reactive MAC population as well as increased levels of monocyte chemoattractant protein 1 (MCP-1) is found. The aim of this study was to investigate the influence of MCP-1 on the differentiation of MO into IMAC. MCS were generated from adenovirally transfected HT-29 cells overexpressing MCP-1, macrophage inflammatory protein 3 alpha (MIP-3α) or non-transfected controls and co-cultured with freshly elutriated blood MO. After 7 days of co-culture MCS were harvested, and expression of the surface antigens CD33 and CD14 as well as the intracellular MAC marker CD68 was determined by flow-cytometry or immunohistochemistry. MCP-1 and MIP-3α expression by HT-29 cells in the MCS was increased by transfection at the time of MCS formation. In contrast to MIP-3α, MCP-1 overexpression induced a massive migration of MO into the three-dimensional aggregates. Differentiation of IMAC was disturbed in MCP-1-transfected MCS compared to experiments with non-transfected control aggregates, or the MIP-3α-transfected MCS, as indicated by high CD14 expression of MO/IMAC cultured inside the MCP-1-transfected MCS, as shown by immunohistochemistry and FACS analysis. Neutralization of MCP-1 was followed by an almost complete absence of monocyte migration into the MCS. MCP-1 induced migration of MO into three-dimensional spheroids generated from HT-29 cells and inhibited intestinal-like differentiation of blood MO into IMAC. It may be speculated that MCP-1 could play a role in the disturbed IMAC differentiation in IBD mucosa.

This publication has 33 references indexed in Scilit: